# **C.U.SHAH UNIVERSITY**

# **Summer Examination-2019**

**Subject Name: Engineering Mathematics - II** 

Subject Code: 4TE02EMT2 Branch: B. Tech (All)

Semester: 2 Date: 20/04/2019 Time: 02:30 To 05:30 Marks: 70

**Instructions:** 

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

**(14)** 

- a) The infinite series  $1+r+r^2+.....+r^{n-1}$  is convergent if
  - (A) |r| < 1 (B) |r| > 1 (C) r = 1 (D) r < -1
- **b)** The sum of the series  $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$  is
  - (A) log 2 (B) zero (C) infinite (D) none of these
- c) If  $f_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$ , then  $(f_n + f_{n-2})$  is equal to?
  - (A)  $\frac{1}{n}$  (B)  $\frac{1}{n-1}$  (C)  $\frac{n}{n-1}$  (D)  $\frac{n-1}{n}$
- d) The value of  $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^7 x \, dx$  is
  - (A)  $\frac{32\pi}{35}$  (B)  $\frac{32}{35}$  (C) zero (D)  $\frac{16}{35}$
- e)  $\frac{1}{2} \frac{3}{2} \frac{5}{2} =$ 
  - (A)  $\frac{3}{8}(\pi)^{\frac{3}{2}}$  (B)  $\frac{3}{8}(\pi)^{\frac{5}{2}}$  (C)  $\frac{3}{8}(\pi)^{\frac{1}{2}}$  (D)  $\frac{1}{8}(\pi)^{\frac{3}{2}}$
- f) Duplication formula:  $\sqrt{n} + \frac{1}{2} = \underline{\qquad}$ 
  - (A)  $\frac{\sqrt{\pi} \ln}{2^{2n-1}}$  (B)  $\frac{\sqrt{\pi} \ln}{2^{n-1}}$  (C)  $\frac{\sqrt{\pi} \ln}{2^{2n-1}}$  (D)  $\frac{\sqrt{\pi} \ln}{2^{n-1}}$
- **g**)  $erf(x) + erf_c(x)$  is equal to
  - (A) 0 (B) 1 (C) -1 (D) 2



**h**) 
$$\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-2\sin^2\theta}}$$
 is equal to

(A) 
$$\frac{1}{\sqrt{2}}E\left(\frac{1}{\sqrt{2}}\right)$$
 (B)  $\frac{1}{2}K\left(\frac{1}{\sqrt{2}}\right)$  (C)  $\frac{1}{\sqrt{2}}K\left(\frac{1}{\sqrt{2}}\right)$  (D)  $\frac{1}{2}E\left(\frac{1}{\sqrt{2}}\right)$ 

- i) The tangents at the origin are obtained by equating to zero
  - (A) the lowest degree terms (B) the highest degree terms
  - (C) constant term (D) none of these
- j) If the powers of x are even, then the curve is symmetrical about (A) X axis (B) Y axis (C) about both X and Y axes (D) None of
- **k)**  $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r^2} \cdot r \, dr \, d\theta \text{ is equal to}$

(A) 
$$\frac{\pi}{2}$$
 (B)  $\pi$  (C)  $\frac{\pi}{4}$  (D)  $-\frac{\pi}{4}$ 

- 1) The transformations x + y = u, x y = v transform the area element  $dy \ dx$  into  $|J| du \ dv$ , where |J| is equal to
  - (A)  $\frac{1}{2}$  (B) 1 (C) u (D) none of these
- **m**) The degree and order of the differential equation of all parabolas whose axis is x-axis are
  - (A) 2, 1 (B) 1, 2 (C) 3, 2 (D) none of these
- **n**) Solution of differential equation xdy ydx = 0 represents
  - (A) Rectangular hyperbola (B) Circle whose centre is at origin
  - (C) Parabola whose vertex is at origin
  - (D) Straight line passing through origin

## Attempt any four questions from Q-2 to Q-8

## Q-2 Attempt all questions

a) Using reduction formula prove that  $\int_{0}^{a} x^{5} \left(2a^{2} - x^{2}\right)^{-3} dx = \frac{1}{2} \left(\log 2 - \frac{1}{2}\right).$  (5)

**b)** Prove that 
$$\int_{0}^{\infty} \frac{x^4}{4^x} dx = \frac{24}{(\log 4)^5}$$
 (5)

c) Evaluate: 
$$\int_{-c}^{c} \int_{-a}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$$
 (4)

## Q-3 Attempt all questions

a) Prove that  $\int_{0}^{1} x^{5} (1 - x^{3})^{10} dx = \frac{1}{3} B(2,11) .$  (5)

**b)** Solve: 
$$\frac{dy}{dx} + 2y \tan x = \sin x$$
 given that  $y = 0$  when  $x = \frac{\pi}{3}$ 



(14)

**(14)** 

| Test the convergence of the series | $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^2} .$ | (4)                                                                              |
|------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------|
|                                    | Test the convergence of the series            | Test the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^2}$ . |

- a) By changing into polar co-ordinates, evaluate the integral  $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} \left(x^{2}+y^{2}\right) dx dy .$  (5)
- **b)** Examine the series  $1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \dots + \frac{x^n}{n^2 + 1} + \dots$  for convergence using ratio test. (5)
- c) Using reduction formula evaluate:  $\int_{0}^{\infty} \frac{x^4}{(1+x^2)^4} dx$  (4)

## Q-5 Attempt all questions (14)

a) Solve: 
$$\frac{(x-2y)}{(3x+y)} \frac{dy}{dx} = 3x^2 - 5xy - 2y^2$$
 (5)

**b)** Change the order of integration in the integral  $\int_{0}^{a} \int_{\frac{x^2}{a}}^{2a-x} xy \, dy \, dx$  and hence (5)

evaluate it.

c) Prove that 
$$\int_{0}^{\infty} \frac{x^4 \left(1 + x^5\right)}{\left(1 + x\right)^{15}} dx = \frac{1}{5005}.$$
 (4)

#### Q-6 Attempt all questions

- a) Examine the series  $\sum_{n=1}^{\infty} \frac{x^n}{n^p}$  for convergence using root test. (5)
- **b)** Using reduction formula prove that  $\int_{0}^{\pi} x \cos^{6} x \, dx = \frac{5\pi^{2}}{32} .$  (5)
- c) Solve:  $(x^2 + y^2 + 1)dx 2xy dy = 0$  (4)

#### Q-7 Attempt all questions

- Trace the curve  $y^2(2a-x)=x^3$ . (5)
- **b)** Find the area enclosed by the cardioid  $r = a(1 \cos \theta)$ . (5)

c) Evaluate: 
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{\sqrt{\cos x}}$$
 (4)

#### Q-8 Attempt all questions (14)

- a) For small values of x, show that  $erf(x) = \frac{2}{\sqrt{\pi}} \left( x \frac{x^3}{1!3} + \frac{x^5}{2!5} \frac{x^7}{3!7} + \dots \right)$ . (5)
- **b)** Trace the curve  $r = a(1 + \cos \theta)$ . (5)
- c) Find the length of the arc of the curve  $y = \log \sec x$  from x = 0 to  $x = \frac{\pi}{3}$  (4)



**(14)** 

**(14)**